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Abstract. An analysis of heterogeneous biological networks based on randomizations
that preserve the structure of component subgraphs is introduced and applied to the yeast
protein-protein interaction and transcriptional regulation interaction network. Shuffling
this network, under the constraint that the transcriptional and protein-protein interaction
subgraphs are preserved reveals statistically significant properties with potential biological
relevance. Within the population of networks which embed the same two original compo-
nent networks, the real one exhibits simultaneously higher bi-connectivity (the amount of
pairs of nodes which are connected using both subgraphs), and higher distances. More-
over, using restricted forms of shuffling that preserve the interface between component
networks, we show that these two properties are independent: restricted shuffles tend to
be more compact, yet do not lose any bi-connectivity.
Finally, we propose an interpretation of the above properties in terms of the signalling
capabilities of the underlying network.

1 Introduction

The availability of genome-scale metabolic, protein-protein interaction and regulatory networks
[24, 7, 3, 5, 20] —following closely the availability of large graphs derived from the Internet hard-
ware and software network structure, from social or collaborative relationships— has spurred
considerable interest in the empirical study of the statistical properties of these ‘real-world’
networks. As part of a wider effort to reverse-engineer biological networks, recent studies have
focused on identifying salient graph properties that can be interpreted as ‘traces’ of underlying
biological mechanisms, shedding light either on their dynamics [22, 10, 6, 27] (i.e., how the con-
nectivity structure of the biological process reflects its dynamics), on their evolution [9, 29, 26]
(i.e., likely scenarios for the evolution of a network exhibiting the observed property or proper-
ties), or both [8, 13, 14]. The statistical graph properties that have been studied in this context
include the distribution of vertex degrees [9, 8], the distribution of the clustering coefficient and
other notions of density [16–18, 21, 4], the distribution of vertex-vertex distances [21], and more
recently the distribution of network motifs occurrences [14].

Identification of a salient property in an empirical graph —for example the fact that the
graph exhibits a unexpectedly skewed vertex degree distribution— requires a prior notion of
the distribution of that property in a class of graphs relatively to which saliency is determined.
The approach chosen by most authors so far has been to use a random graph model, typically
given by a probabilistic graph generation algorithm that constructs graphs by local addition of
vertices and edges [19, 1, 23]. For the simplest random graph models, such as the classical Erdös-
Rényi model (where each pair of vertices is connected with constant probability p, [2]), analytical
derivations of the simplest of the above graph properties are known [19, 1].

In the general case, however, analytical derivation is beyond the reach of current mathemat-
ical knowledge and one has to retort to numerical simulation. The random graph model is used



to generate a sample of the corresponding class of graphs and the distribution of the graph prop-
erty of interest is evaluated on that sample, providing a standard against which the bias of the
studied graph can be measured [22, 13, 28]. Perhaps because of the local nature of the random
graph generation process, it is mostly simple local network properties that have been successfully
reproduced in that fashion. Another, somewhat more empirical, category of approaches reverses
the process: variants are generated from the network of interest using a random rewiring proce-
dure. The procedure selects and moves edges randomly, preserving the global number of edges,
and optionally their type, as well as local properties such as the degree of each vertex. Rewirings
are thus heuristic procedures which perform a sequence of local modifications on the structure
of the network.

The specific focus of the present paper is on measuring the degree of cooperation between
the two subgraphs of the yeast graph of interactions induced by the natural partition of edges
as corresponding either to transcriptional interaction (directed) or to protein protein interaction
(undirected). To evaluate a potential deviation with respect to such a measure, one needs as
a first ingredient a suitable notion of random variation of the original graph. The goal is here,
as in many other cases, to contrast values of a given observable on the real graph, against the
distribution of those same values in the population of variants. We define shuffles of the original
graph as those graphs that are composed exactly of the original two subgraphs of interest, the
variable part being the way these are ‘glued’ together.

From the probabilistic point of view, this notion of randomisation coincides with a traditional
Erdös-Renyi statistics, except that it is conditioned by the preservation of the original subgraphs.
Designing a generative random graph model that would only yield networks preserving this very
precise property seems to be a hard endeavor ; it is not as easy as in the unconditional Erdös-
Renyi model to draw edges step by step yet ensure that component subgraphs will be obtained
in the end. Shuffling might also be seen as rewiring, except the invariant is large-scale and
extremely precise: it is not edges that are moved around but entire subgraphs. Moving edges
independently would break the structure of the subnetworks, and designing a sequential rewiring
procedure that eventually recovers that structure is not an obvious task. Moreover, it would be
in general difficult to ensure the uniformity of the sample ; see [15] for a thorough analysis of
rewiring procedures. This choice of an invariant seems rather natural in that one is interested
in qualifying the interplay between the original subgraphs in the original graph. Now, it is not
enough to have a sensible notion of randomisation, it is also crucial to have a computational
handle on it. Indeed, whatever the observable one wants to use to mark cooperation is, there
is little hope of obtaining an analytic expression for its distribution, hence one needs sampling.
Fortunately, it turns out it is easy to generate shuffles uniformly, since these can be described
by pairs of permutations over nodes, so that one can always sample this distribution for want
of an exact expression. As explained below in more details, the analysis will use two different
notions of subgraph-preserving sampling: general shuffles, and equatorial ones that also preserve
the interface between our two subgraphs. Equatorial shuffles are feasible as well, and in both
cases the algorithms for sampling and evaluating our measures turn out to be fast enough so
that one can sweep over a not so small subset of the total population of samples.

Regarding the second necessary ingredient, namely which observable to use to measure in a
meaningful way the otherwise quite vague notion of cooperation, there are again various possibili-
ties. We use two such observables in the present study: the connectivity, defined as the percentage
of disconnected pairs of nodes, and a refined quantitative version of connectivity, namely the full
distance distribution between pairs of nodes. The latter is costlier, requiring about three hours
of computation for each sample on a standard personal computer.

Once we have both our notion of randomisations and our observables in place, together with
a feasible way of sampling the distribution of the latter, we can start. Specifically we run four
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experiments, using general or equatorial shuffling, and crude or refined connectivity measures.
The sampling process allows us to compare the values of these measures for the original graph
with the mean value for the sample, and, based on the assumption that those values follow a
normal distribution over the sample, one can also provide a p-value that gives a rough estimate
of the statistical deviation of the observable in the given graph.

The general shuffle based experiments show with significant statistical confidence that shuf-
fling reduces connectivity (1), and at the same time contracts distances (2). More precisely, both
bi-connectivity (the amount of pairs of nodes which are connected using both subgraphs) and
distances are higher than average in the real network. A first interpretation might be that the
real graph is trading off compactness for better bi-connectivity. In order to obtain a clearer
picture and test this interpretation, we perform two other experiments using equatorial shuf-
fles. Surprisingly, under equatorial shuffles connectivity hardly changes, while the global shift
to shorter distances is still manifest. It seems therefore there is actually no trade-off, and both
properties (1) and (2) have to be thought of as being independently captured by the real graph.
With appropriate caution, we may try to provide a biological interpretation of this phenomenon.
Since all notions of connectivity and distances are understood as directed, we propose to relate
this to signalling, and interpret bi-connectivity as a measure of the capability to convey a signal
between subgraphs. With this interpretation, the above properties may be read as:(1) signal
flows better than average and (2) signal is more specific than average. The second point requires
explanation. At constant bi-connectivity, longer average distances imply that upon receipt of
a signal, the receiver has a better chance of guessing the emitter. In other words, contraction
of distances (which can be easily achieved by using hubs) will anonymise signals, clearly not a
desirable feature in a regulatory network. Of course this is only part of the story, since some hubs
will also have an active role in signal integration and decision making. The latter is probably
an incentive for compactness. If our reading of the results is on track, we then may think of
the above experiments as showing that the tropism to compactness due to the need for signal
integration, is weaker than the one needed for signal specificity.

Beyond the particular example we chose to develop here because of the wealth of knowledge
available on the yeast regulatory and protein interaction networks, one can think of many other
applications of the shuffling methodology for heterogeneous networks. The analyses performed
here rely on edges corresponding to different types of experimental measurements, but edges
could also represent different types of predicted functional links. Indeed, there are many situations
where a biological network of interactions can be naturally seen as heterogeneous. Besides, the
notions of shuffle we propose can also accomodate the case where one would use a partition of
nodes, perhaps given by clustering, or localisation, or indeed any relevant biological information,
and they may therefore prove useful in other scenarios.

The paper is organised as follows: first, we set up the definitions of edge-based general and
equatorial shuffles based, and also consider briefly node-based shuffles though these are not used
in the sequel; then we describe the interaction network of interest and the way it was obtained;
finally we define our observables and experiments, and interpret them. In the conclusion, we
discuss generalization and potential applications of the method. The paper ends with an appendix
on the algorithmical aspects of the experiments, and a brief recall of the elementary notions of
statistics we use to assert their significance.

2 Shuffles

Let G = (V,E) be a directed graph, where V is a finite set of nodes, and E is a finite set of
directed edges over V . We write M for the incidence matrix associated to G. Since G is directed,
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M may not be symmetric. In the absence of parallel edges M has coefficients in {0, 1}, but we
don’t assume here that there are no parallel edges.

Given such a matrix M and a permutation σ over V , one writes Mσ for the matrix defined
as for all u, v in V :

Mσ(u, v) := M(σ−1u, σ−1v)

Note that Mσ defines the same abstract graph as M does, since all σ does is changing the nodes
names.

2.1 Shuffles induced by properties on edges

We consider first shuffles induced by properties on edges. Suppose given a partition of E =
∑

Ei;
this is equivalent to giving a map κ : E → {1, . . . , p} which one can think of as colouring edges.

Define Mi as the incidence matrix over V containing the edges in Ei (of colour i).
Define also VI , where I ⊆ {1, . . . , p}, as the subset of nodes v having for each i ∈ I at least

one edge incident to v with colour i, and no incident edge coloured j for j 6∈ I. We abuse notation
and still write κ(u) = I when u ∈ VI . This represents the set of colours seen by the nodes.

Clearly V =
∑

VI , V∅ is the set of isolated nodes of G, and the set of nodes of Gi is the
union of the graphs generated by VI , for i ∈ I.

Given σ1, . . . , σp permutations over V , define the global shuffle of M as:

M(σ1, . . . , σp) :=
∑

i Miσi

The preceding definition of Mσ is the particular case where p = 1 (one has only one colour com-
mon to all edges). Each Gi (the abstract graph associated to Mi) is preserved up to isomorphism
under this transformation. However the way the Gis are glued together is not, since one uses a
different local shuffle on each.

For moral comfort, we can check that any means of glueing together the Gis is obtainable
using a general shuffle in the following sense: given G′ and

∑
qi :

∑
Gi → G′ where the disjoint

sum
∑

i qi is an isomorphism on edges, one has that G′ is a general shuffle of G. To see this,
define σi(u) := qip

−1
i (u) if u ∈ κ−1(i), σi(u) = u else (we have written pi for the inclusion of Gi

in G), one then has G′ =
∑

Giσi = G(σ1, . . . , σp).
Note also that (M(σ1, . . . , σp))τ :=

∑
i Mi(τσi), and so in particular, without loss of gener-

ality one can take any the σi’s to be the identity (just take τ = σ−1
i ). This is useful when doing

actual computations, and avoids some redundancy in generating samples.
An additional definition will help us refine the typology of shuffles. One says a shuffle Mσ is

equatorial if in addition for all I, and all i, VI is closed under σi. Equivalently, one can ask that
κ ◦ σi = κ. An equatorial shuffle preserves the set of colours associated with each node and in
particular preserves for a given pair of nodes (u, v) the fact that (u, v) is heterochromatic, i.e.,
κ(u) ∩ κ(v) = ∅. This in turn implies that the distance between u and v must be realised by
a path which uses edges of different colours. In the application such paths are mixing different
types of interaction, and are therefore of particular interest; without preserving this attribute,
an observable based on path with different colours would not make sense. In the particular case
of two colours, nodes at the ‘equator’, having both colours, will be globally preserved, hence the
name.

2.2 Shuffles induced by properties on vertices

One can also consider briefly shuffles induced by properties on nodes. Suppose then given a
partition of nodes V =

∑
i Vi, again that can be thought of as a colouring of nodes κ : V →

{1, . . . , p}, and extended naturally to the assignment of one or two colours to each edge.
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A node shuffle is defined as a shuffle associated to σ which can be decomposed as
∑

i σi, σi

being a permutation over each cluster Vi. Clearly each graph Gi generated by Vi is invariant
under the transformation: only the inter-cluster connectivity is modified.

The equivalent of the equatorial constraint would be to require in addition σ(u) ∈ ∂Vi iff
u ∈ ∂Vi, where ∂Vi is defined as those nodes of Vi with an edge to some Vj , i 6= j. Other variants
are possible and the choice of the specific variant will likely depend on the particular case study.
We now turn to the description of the network the shuffle experiments will be applied to.

3 A combined network of regulatory and protein-protein interactions
in yeast

With our definitions in place, we can now illustrate the approach on a heterogeneous network
obtained by glueing two component networks.

It is known that regulatory influences, including those inferred from expression data analysis
or genetic experiments, are implemented by the cell through a combination of direct regulatory
interactions and protein-protein interactions, which propagate signals and modulate the activity
level of transcription factors. The detailed principles underlying that implementation are not
well understood, but one guiding property is the fact that protein interaction and transcriptional
regulation events take place in the regulatory network at different time-scales.

In order to clarify the interplay between these two types of interactions, we have combined
protein-protein (PPI) and protein-DNA (TRI, for ‘transcriptional regulation interaction’) inter-
action data coming from various sources into a heterogeneous network by glueing together these
two networks on the underlying set of yeast proteins.

The data from which the composite network was built includes: 1440 protein complexes iden-
tified from the literature, through HMS-PCI or TAP [3, 5], 8531 physical interactions generated
using high-throughput Y2H assays [25], and 7455 direct regulatory interactions compiled from
literature and from ChIP-Chip experiments [4, 11], connecting a total of 6541 yeast proteins. A
subnetwork of high-reliability interactions was selected, using a custom reliability scale founded
on quality indicators provided by the authors, if any and otherwise on assay type. In the latter
case, the scale favors experiments with higher specificity : assays are considered more reliable
when they focus on a small number of interactions, whereas low specificity experiments (e.g.
baits that bind to many preys in yeast-two hybrid) are disfavored. The PPI network is built by
connecting two proteins, in both directions, whenever there is a protein-protein or a complex
interaction between the two corresponding proteins. In the case of the TRI network, an edge
connects a regulator protein with its regulatee.

To simplify the discussion, we will refer in the rest of the paper to the TRI graph as TRI,
and to the PPI graph as PPI. With some more precision, define G as the real graph, TRI as
the subgraph induced by the set of TRI nodes, i.e., nodes such that TRI ∈ κ(u), and PPI as
the subgraph induced by the set of PPI nodes.

Their respective sizes are:

TRI = 3387, PPI = 2517, TRI ∪ PPI = 4489, TRI ∩ PPI = 1415

The set of nodes TRI ∩ PPI of both colours is also referred to in the sequel as the equator or
the interface. Since the object of the following is to discuss the interplay between the TRI and
PPI subgraphs, the interface naturally plays an important role. A qualitative measure of the
connectivity between TRI and PPI which will be useful later in the discussion, is the number
of bi-connected pairs in G (these are the pairs which are connected in G, but not connected in
either TRI or PPI), which is roughly pbi = 23%.
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4 Results and interpretations

Thereafter, and except when we explicitly say so, notions of connectivity, distance, etc. should
be understood as directed. We now turn to the various shuffle experiments and consecutive
observations.

4.1 General shuffle vs connectivity

We take here as a rough measure of the connectivity of a graph the percentage of unconnected
pairs. Comparing first the real graph with the randomised versions under the general shuffle, one
finds that in the average 4% of the population pairs are disconnected under shuffle. So general
shuffle disconnects, or in other words G maximises bi-connectivity.

Clearly mono-connected pairs (pairs connected in either PPI or TRI) cannot be disconnected
under general shuffle; a pair is ‘breakable’ only if bi-connected in G; therefore a more accurate
measure of the connectivity loss under general shuffle is that about 17.5% of the breakable pairs
are actually broken (this obtained by dividing by pbi), a rather strong deviation with a p-value
below 10−11.

Inasmuch as a directed path can be thought of as a signal-carrying pathway, one can interpret
the above as saying that the real graph connects PPI and TRI so as to maximise the bandwidth
between the subgraphs.

4.2 Equatorial shuffle vs connectivity

Keeping with the same observable, we now restrict to equatorial shuffles. One sees in this case
that no disconnection happens, and actually about 1% more pairs are connected after shuffling.
The default of connected pairs of the real graph has a far less significant p-value of 3%. However
the point is that equatorial shuffles leaves bi-connectivity rather the same.

This complements the first observation and essentially says that the connectivity maximisa-
tion seen above is a property of the set of equatorial nodes ( {TRI,PPI} nodes) itself, and not
of the precise way TRI and PPI edges meet at the equator.

Both observations can be understood as saying that the restriction of G to the equator is a
much denser subgraph than its complement (as evidenced by the connectivity loss under general
shuffle), and dense enough so that equatorial shuffling does not impact connectivity.

Note that so far the observable is somewhat qualitative, being only about whether a pair is
connected or not. Using a refined and quantitative version of connectivity, namely the distribution
of distances (meaning for each n the proportion of pairs at distance n), will reveal more.

4.3 Impact of equatorial shuffles on distance distribution

Using this refined observable, one sees that the whole histogram shifts to the left, so equatorial
shuffle contracts the graph (Fig. 1). This is confirmed by the detailed balance between the number
of lost pairs at distance 7 to 9 and the number of new ones at distance 3 to 5. In accordance with
the preceding experiment, one also does not see any disconnection under equatorial shuffle. This
is to be compared with the general shuffle version (Fig. 2) where both effects are mixed, and the
cumulated excess of short pairs does not account for the loss of long pairs (indeed we know 4%
are broken, i.e., disappear at infinity and are not shown on the histogram).

To summarize the distance distribution results in a single number, one can compute the
deviation of the real graph mean distance under both shuffles. As expected the mean distance is
higher in the real graph with respective p-values of 0.2% and 2% in the general and equatorial
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Fig. 1. Equatorial shuffle distance histogram: grey boxes stand for the real graph; one sees that shuffles
have more pairs at shorter distance, and consequently (because the number of connected pairs is about
the same) less such at higher distances.

shuffles (see Appendix for details). We conclude that while the real graph does maximise bi-
connectivity, it does not try to minimise the associated distances.

To provide an intuition on the potential interpretation of the above result, let us again consider
paths as rough approximations of signalling pathways. Now compare a completely linear chain-
shaped graph and star-shaped one, with the same number of nodes and edges. In the star case,
any two nodes are close, at constant distance 2, while in the chain distances are longer. As said,
compactness comes with a price, namely that in a star graph all signals go through the hub and
are anonymised, i.e., there may be a signal, but there is no information whatsoever in the signal
about where the signal originated from. Quite the opposite happens in a linear graph. Of course
this is an idealized version of the real situation; nevertheless it is tempting to interpret this last
observation as an indication that the real graph is trading off fast connectivity against specificity
of signals. The heterogeneous network is likely to result from a trade-off between causality and
signal integration.

As suggested in the introduction, finer observables would have to be developed to further
refine this interpretation. Furthermore, there are intrinsic limits on the nature of properties
that can be identified using pure topology; deeper, reliable insights about signal transmission
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Fig. 2. Global shuffle distance histogram

in the joint network will ultimately require a dynamical view of signaling with corresponding
experimental data.

5 Conclusion

In order to assess the cooperation between the network of protein-protein interactions and the
regulatory network in yeast, we have defined two notions of shuffle, i.e. tractable randomisa-
tions of the original network that preserve global invariants. While general shuffles preserve the
entire structure of the component subnetworks, equatorial shuffles also preserve the interface
between the networks. We assessed cooperation between the subnetworks using two observables:
the percentage of connected node pairs, and the distribution of distances between nodes. For each
shuffle-observable pair, the observable in the real network was assessed against the distribution
of observables in the set of network variants generated by the respective shuffle.

To summarise the results of this case study, we can say that the statistical analysis of G
shuffles under the constraint of preserving its component subnetworks suggests the existence of
two independent properties of G regarding the cooperation of its components:

– bi-connectivity is higher in the actual network than in the shuffles;
– distances between pairs of nodes are higher in the actual network;
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The first property can be given an interpretation in terms of bandwidth: signals flow better
between the two networks than would be expected if they were connected randomly. The second
property can be interpreted as favoring signal specificity: for cellular interaction networks (in
contrast with telecommunications networks, for instance, where each packet carries significant
intrinsic information) the information borne by a signal is very much related to the path it has
followed. Longer paths thus provide more opportunity for specific signals. Note that the fact that
we worked with directed notions (and not with undirected ones as we did in a first version of
this paper) makes the interpretation of paths as potential signaling pathways somewhat more
convincing.

We have been careful in the discussion of the results of our statistical experiments in terms
of signalling capacities, and this needs to be thrashed out in subsequent work. To do so one
would first need refined and yet feasible observables pertaining to the dynamics of the network
of interest. A recent paper equips the subgraph induced by the major molecular players in
the budding yeast cell cycle (cyclins, their inhibitors, and major complexes) with a discrete
Boolean dynamics [12], and obtains a dynamics with a stable state corresponding to the G1

phase, which is attracting a significantly higher number of states than a random graph (with
the same number of nodes and edges) would. It seems therefore possible to explicitly construct
signal-related observables. However there are several problems: first, this analysis relies on sorting
positive and negative regulation edges, and that is an information which one doesn’t have for
the full graph; second it also critically relies on the rather small size of the subgraph; finally the
model only handles a limited number of signals (corresponding to the various cell cycle phases).
Nevertheless, a comparable study, using shuffles as a means of randomising, and confined to a
well-chosen subgraph could help in qualifying our speculative interpretation of the contraction
phenomenon we have observed.

On the methodological front, both the general notion of shuffle and the restricted notion of
equatorial shuffle proved useful: they reveal different properties and complement one another.
The same holds for the pair of observables: both the qualitative connectivity observable and its
refined distance-based version are useful, and yield different and complementary insights on the
cooperation between the two component networks.

We believe that the shuffling methodology developed for this case study has general applica-
bility to the study of heterogeneous biological networks, i.e. networks that can be seen as the
“glueing” of two or more component networks. Shuffles preserve global invariant properties (the
structure of component networks), and define rigorously and unambiguously the class of networks
which obey these properties. They are also easily computable and can be generated uniformly,
by drawing from a set of acceptable permutations. Note that the latter property is in contrast
with randomizations based on sequential rewiring strategies, where each rewiring step perturbs
the structure while preserving one or more local invariants. While these approaches may prove
to be asymptotically equivalent in some cases, they typically do not provide a direct definition
nor the means to uniformly sample the set of randomizations which preserve the invariant, since
the order of the rewiring steps matters.

Given an interaction network between biochemical species, any biological property on edges
(type of interaction, degree of confidence, localization of interaction...) or on nodes (type of
entity, functional annotation, inclusion within clusters generated using a given data type and
methodology, etc...) with discrete values can be used to define a heterogeneous version of that
network. Then, either the type of edge shuffles used above, or shuffles preserving other categories
of top-down invariants, such as the projection of a network onto a given network of abstract
clusters, could be explored. Likewise, a variety of observable properties may be used to investigate
cooperation between component subnetworks. Perhaps the foremost promise of the shuffling
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approach resides in the interplay between different shuffle-observable pairs, which allows an
exploratory assessment of cooperation adapted to the heterogeneous network at hand.
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2. P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci.,
5:1761, 1960.

3. AC Gavin, M Bosche, R Krause, P Grandi, M Marzioch, A Bauer, J Schultz, JM Rick, AM Mi-
chon, CM Cruciat, M Remor, C Hofert, M Schelder, M Brajenovic, H Ruffner, A Merino, K Klein,
M Hudak, D Dickson, T Rudi, V Gnau, A Bauch, S Bastuck, Huhse, C Leutwein, MA Heurtier,
RR Copley, A Edelmann, E Querfurth, V Rybin, G Drewes, M Raida, T Bouwmeester, P Bork,
B Seraphin, B Kuster, G Neubauer, and G. Superti-Furga. Functional organization of the yeast
proteome by systematic analysis of protein complexes. Nature, 415(6868)(Jan 10):141–7., 2002.

4. N. Guelzim, S. Bottani, P. Bourgine, and F. Kepes. Topological and causal structure of the yeast
transcriptional regulatory network. Nat Genet, 31(1):60–3, 2002.

5. Y Ho, A Gruhler, A Heilbut, GD Bader, L Moore, SL Adams, A Millar, P Taylor, K Bennett,
K Boutilier, L Yang, C Wolting, I Donaldson, S Schandorff, J Shewnarane, M Vo, J Taggart,
M Goudreault, B Muskat, C Alfarano, D Dewar, Z Lin, K Michalickova, AR Willems, H Sassi,
PA Nielsen, KJ Rasmussen, JR Andersen, LE Johansen, LH Hansen, H Jespersen, A Podtelejnikov,
E Nielsen, J Crawford, V Poulsen, BD Sorensen, J Matthiesen, RC Hendrickson, F Gleeson, T Paw-
son, MF Moran, D Durocher, M Mann, CW Hogue, D Figeys, and M Tyers. Systematic identifica-
tion of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868)(Jan
10):180–3, 2002.

6. J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing modular orga-
nization in the yeast transcriptional network. Nat Genet, 31(4):370–7, 2002.

7. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid
analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A, 98(8):4569–74, 2001.

8. H. Jeong, S. P. Mason, A. L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein networks.
Nature, 411(6833):41–2, 2001.

9. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabasi. The large-scale organization of
metabolic networks. Nature, 407:651–654, 2000.

10. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs. Bioinformatics, 2004.

11. T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T.
Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon,
B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young.
Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298(5594):799–804, 2002.

12. Fangting Li, Tao Long, Ying Lu, Qi Ouyang, and Chao Tang. The yeast cell-cycle network is robustly
designed. PNAS, 101(14):11250–11255, April 2004.

13. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon.
Superfamilies of evolved and designed networks. Science, 303(5663):1538–42, 2004.

14. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science, 298(5594):824–7, 2002.

15. R. Milo, S. S. Shen-Orr, S. Itzkowitz, N. Kashtan, D. Chklovskii, and U. Alon. On the uniform
generation of random graphs with prescribed degree sequence. ArXiv, 2003.

16. M. E. Newman. Assortative mixing in networks. Phys Rev Lett, 89(20):208701, 2002.

17. M. E. Newman. Properties of highly clustered networks. Phys Rev E Stat Nonlin Soft Matter Phys,
68(2 Pt 2):026121, 2003.

18. M. E. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys Rev
E Stat Nonlin Soft Matter Phys, 69(2 Pt 2):026113, 2004.

10



19. M. E. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions
and their applications. Phys Rev E Stat Nonlin Soft Matter Phys, 64(2 Pt 2):026118, 2001.

20. N. D. Price, J. A. Papin, C. H. Schilling, and B. O. Palsson. Genome-scale microbial in silico models:
the constraints-based approach. Trends Biotechnol, 21(4):162–9, 2003.

21. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabasi. Hierarchical organization
of modularity in metabolic networks. Science, 297(5586):1551–5, 2002.

22. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation
network of escherichia coli. Nat Genet, 31(1):64–8, 2002.

23. S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268–76, 2001.
24. P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan,

M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vi-
jayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. A comprehensive analysis of
protein-protein interactions in saccharomyces cerevisiae. Nature, 403(6770):623–7, 2000.

25. C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P. Bork. Comparative
assessment of large-scale data sets of protein-protein interactions. Nature, 417(6887):399–403, 2002.

26. A. Wagner. The yeast protein interaction network evolves rapidly and contains few redundant
duplicate genes. Mol Biol Evol, 18(7):1283–92, 2001.

27. D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393(6684):440–2, 1998.

28. E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R. Y. Pinter, U. Alon, and H. Mar-
galit. Network motifs in integrated cellular networks of transcription-regulation and protein-protein
interaction. Proc Natl Acad Sci U S A, 101(16):5934–9, 2004.

29. S. H. Yook, H. Jeong, A. L. Barabasi, and Y. Tu. Weighted evolving networks. Phys Rev Lett,
86(25):5835–8, 2001.

A Computation of the shortest paths length distribution

This section is devoted to a brief description of the algorithms and methods used to derive the
various statistics used in the study of the yeast regulation and protein interaction networks.

Clearly the (i, j) coefficient of Mn is the number of oriented paths of length n connecting i
to j in the graph underlying M . Since we are only interested in knowing whether two nodes are
connected by an oriented path of a given length we may use a simplified matrix product defined
as:

Mn(i, j) =

{
1 if ∃k ∈ V : Mn−1(i, k) = M(k, j) = 1
0 otherwise

which is just forgetting the numbers of connecting paths, only to remember whether there is at
least one.

Furthermore, the addition of the identity matrix I to the adjacency matrix before the compu-
tation of the products gives an immediate access to the value of the cumulative distribution func-
tion of the oriented, shortest path length distances in the network. Indeed, writing M̂ = M + I:

M̂n(i, j) =


1 if ∃k ∈ V,Mn−1(i, k) = M(k, j) = 1

or M̂n−1(i, j) = 1
0 otherwise

Thus the number of 1s in M̂(G)n is the number of ordered pairs connected by at least one path
of length ≤ n, and the entire distribution is obtained when the computation reaches a fixpoint.
Computing the distribution on the real PPI-TRI graph takes about 180’ on a recent PC ; the
distribution for the 100 shuffles were computed down in less than 10 hours on a cluster of 41
computers hosted by Genoscope.
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B Statistics

This section details the definition and computation of p-values shown in the statistical results,
concerning both the amount of connected pairs and the average distance.

In order to compute p-values for the deviation of the observable on the real graph from its dis-
ribution over the set of shuffled ones, we need to approximate this distribution by a Gaussian one,
with mean and standard deviation fixed to the empirical values computed on the sample. This
is necessary, since the rather low amount of shuffled networks (100) prevents a direct estimation
of the p-value as the proportion of shuffled networks with a larger observable.

Concerning the amount of disconnected pairs, which is the first observable considered in the
results, the empirical mean over the set of general shuffles is mg = 0.574, and the standard
deviation sg = 0.005. In the case of the equatorial shuffle, the mean falls to me = 0.534, with a
standard deviation of 0.002.

Assuming this average proportion is a Gaussian random variable A with those parameters,
the p-value of the deviation of the average proportion of disconnected pairs in the real network
from its distribution over the sample of general shuffled networks is defined as:

pg = P(A < mG), with A ∼ N (mg, sg)

where mG = 0.538 is the observed proportion of disconnected pairs in the real network. In this
case, this yields pg = 9× 10−12.

Since the proportion of disconnected pairs in the real graph is higher than the average amount
of disconnected pairs in the equatorially shuffled ones, one computes the p-value pe using the
upper tail of the distribution instead of the lower one:

pe = P(A > mG), with A ∼ N (me, se)

so that pe = 0.03.
The computation of the p-value for the deviation of the mean distance from its value on

shuffled networks follows the same scheme. The mean distance in the real graph is md
G = 5.66,

while its average over the set of shuffled graphs is md
g = 5.38 for the general shuffle, and md

e = 5.5
for the equatorial one. Standard deviation is sd

g = 0.09 with the general shuffle, and sd
e = 0.08 with

the equatorial one. The p-values for these deviations are pd
g = 0.002 and pd

e = 0.02, respectively.
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