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Abstract. An analysis of biological networks based on property-preserving
randomizations is presented. Unlike any other method proposed yet, ours
assumes no preliminary notion of random network and is not limited to
the detection of local properties.

The feasibility and relevance of the method are demonstrated in the
yeast protein-protein interaction and transcriptional regulation interac-
tion network. A measure of modularity is proposed revealing a significant
deviation between the real network and the randomized versions.

1 Introduction

The availability of genome-scale metabolic, protein-protein interaction and reg-
ulatory networks [23,8,4,6,19] —following closely the availability of large graphs
derived from the Internet hardware and software network structure, from social
or collaborative relationships— has spurred considerable interest in the empir-
ical study of the statistical properties of these ‘real-world’ networks. As part
of a wider effort to reverse-engineer biological networks, recent studies have fo-
cused on identifying salient graph properties that can be interpreted as ‘traces’
of underlying biological mechanisms, shedding light either on their dynamics
[21,11,7,26] (i.e., how the connectivity structure of the biological process re-
flects its dynamics), on their evolution [10,28,25] (i.e., likely scenarios for the
evolution of a network exhibiting the observed property or properties), or both
[9,13,14]. The statistical graph properties that have been studied in this context
include the distribution of vertex degrees [10,9], the distribution of the clus-
tering coefficient and other notions of density [15,16,17,20,5], the distribution
of vertex-vertex distances [20], and more recently the distribution of network
motifs occurrences [14].

Identification of a salient property in an empirical graph —for example the
fact that the graph exhibits a unexpectedly skewed vertex degree distribution—
requires a prior notion of the distribution of that property in a class of graphs
relatively to which saliency is determined. The approach chosen by most authors
so far has been to use a random graph model, typically given by a probabilistic
graph generation algorithm that constructs graphs by local addition of vertices
and edges [18,1,22]. For the simplest random graph models, such as the classical



Erdös-Rényi model (where each pair of vertices is connected with constant prob-
ability p, [3]), analytical derivations of the simplest of the above graph properties
are known [18,1].

In the general case, however, analytical derivation is beyond the reach of
current mathematical knowledge and one has to retort to numerical simulation.
The random graph model is used to generate a sample of the corresponding class
of graphs and the distribution of the graph property of interest is evaluated
on that sample, providing a standard against which the bias of the studied
graph can be measured [21,13,27]. Some of these random graph models are not
only designed to emulate one or more network properties —such as the small-
world property (the average distance between nodes is logarithmic in the total
number of nodes), or the power-law nature of vertex degree distribution (the
probability of having n immediate neighbours varies as 1/nγ with 2 < γ ≤ 3)—
but also understood as constructive explanations for the evolution of the class
of biological networks under scrutiny [10,9,25,20]. Again, perhaps because of the
local nature of the random graph generation process, it is mostly simple local
network properties that have been successfully reproduced in that fashion.

Our general approach, in essence, is to reverse the process. Rather than con-
trast the network of interest against an independent random graph model, one
generates the model from the original graph itself. Specifically, one selects a
property of the graph and generates a sample of randomized graphs within the
class of graphs sharing this property. This sample is then compared with the
original graph. Whichever property is lost in the shuffling process can then be
construed as a system property that has to be understood and can serve as a
means of statistically validating and classifying other networks, perhaps by ho-
mology considerations. That said, there are obvious constraints bearing on the
choice of properties both for shuffling the original graph and for comparing it
with the obtained sample. First, the associated randomization has to be feasi-
ble. Second, new properties, one could not obtain in the traditional bottom-up
approach have to be made accessible by the new method, else why bother with
a new method ?

The specific contribution of this article is to rigorously define a category of
global properties where the shuffling procedure is easily implemented and does
lead to something new, in that properties may describe at some level of detail how
a biological attribute of vertices or edges unfolds on the graph structure, and may
include detailed topological structures of subgraphs. Clearly such investigations
are not within reach of the usual methods. To be a bit more concrete, suppose
a heterogeneous network, i.e., with several types of edges (relationships) on
the same set of vertices (biological entities, e.g., proteins), is given. One can
then demand that the shuffling preserve homogeneous component subnetworks
—each corresponding to one type of edge— and allow them to be glued back
randomly. Various criteria can be used to measure the relative strength of the
chunk cooperativity in the true graph compared to a randomized one.

To illustrate the method, we investigated the network obtained by combining
protein-protein interactions (PPI) and direct transcriptional influences (protein-
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DNA interactions, thereafter abbreviated as TRI) in yeast, using the protein-
protein distance distribution as a means of measuring cooperativity. One would
expect, and the authors did, to observe a significant statistical deviation, showing
more cooperation between the PPI and the TRI chunks in the true graph. One
would think that the way both subnetworks are glued in the true network makes
it an even smaller or more compact world that the randomized variants. It turns
out it is the exact opposite. Distances in the real network are larger in average. A
reasonable guess is that the network seen as an information processor has more
definite functions (in other words is more expressive) if it is modular, and being
modular means probably losing on the side of having short paths. However, we
don’t have at the moment any solid explanation for this phenomenon but it is
certainly a good point for the method itself to generate new observations from
data that demand a biological explanation, and most likely one of an unusual
kind.

The rest of this article is organized as follows. Section 2 defines more precisely
what we mean by graph property, invariants and shuffles. Section 3 describes
the application to the combined PPI—TRI network in yeast. Finally, we list
several directions for future research on the identification of relevant properties
in biological networks.

2 Properties, invariants and shuffles

The notion of graph property can be used within a variety of contexts and thrives
without the umbrella of an overarching definition. Existing work on the analysis
of biological networks and other types of large networks modeling ‘real-world’
phenomena, however, is actually very focused on a small set of graph properties,
such as the distribution of vertices degrees, the clustering coefficient, or more
recently the distribution of small ‘network motifs’ within the graph. One common
point of these properties is that they describe a statistical distribution of local
characteristics of the graph structure.

In the case of biological networks, another layer of information is often associ-
ated with the graph: attributes of vertices and edges bearing biological informa-
tion. These are also local characteristics of the graph in the sense that they are
associated with individual graph elements, and their distribution on the graph
can also be studied.

Here, we will take the view that an attribute of graph elements (vertices or
edges) is a mapping from these elements to a discrete set of values. While this
view extends to continuous sets of values, for instance via discretization, the
discrete nature of a property is precisely what allows its study in the present
context.

An attribute of vertices or edges may represent a biological piece of informa-
tion (e.g., the functional class associated to a protein), but it may also reflect
some local property of the graph structure (e.g., the degree of a vertex, or inclu-
sion of a vertex within a cluster, where the clustering was performed by using
some distance on the graph). The point is that we do not focus here on how
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the property is obtained. Rather, we focus on how the distribution of the at-
tribute values on the graph structure can be imposed as an invariant on a class
of graphs, in order to study how it influences the distribution of other observable
properties.

Several types of such invariants can be envisioned, based either on vertices
or edges attributes:

1. the complete graph structure of one or more subgraphs of the initial graph,
subgraphs which may be defined on the basis of edge or vertices attributes.

2. the partition of vertices (or edges) into a set of equivalence classes defined
on the basis of a given attribute. This can also be seen as the distribution of
vertices (or edges) into clusters, and described formally as a map from the
initial graph into an abstract graph of clusters, with no edges; the invariant
to be preserved is then the morphism onto that specific abstract graph.

3. the structure of the partition into equivalence classes along with constraints
on the edges between these classes. This corresponds to a morphism into an
abstract graph of interconnected clusters.

A shuffle relative to an invariant is then defined as a special case of permu-
tation on the graph that preserves that invariant.

For the rest of this paper, we will focus on the first type of invariant: preser-
vation of the complete connectivity structure of subgraphs defined on the basis of
an edge attribute. In order to give a rigorous definition of this type of invariant,
let us define a notion of heterogeneous graph as a graph obtained by combining
several graphs by ‘glueing them together’ on the same set of vertices.

2.1 Graphs and morphisms

Graphs can be defined in many ways depending on whether loops, multi edges
and directed edges are allowed or not; we take here the view that a graph is
directed, include loops and multi-edges (two vertices may be connected more
than once).

Definition 1 A graph consists of:

– two finite sets E, V of edges and vertices (or nodes),
– and two maps t, s, called target and source, mapping E to V .

Equally important here, is the notion of a morphism between two graphs.

Definition 2 Suppose two graphs (V,E, t, s) and (V ′, E′, t′, s′) given, then a
map f from V to V ′ and E to E′ is said to be a morphism if for all e ∈ E:

f(s(e)) = s′(f(e)) and f(t(e)) = t′(f(e))

Morphisms compose, that is given f1 : G1 → G2 and f2 : G2 → G3, one can
form their composite f2 ◦ f1 : G1 → G3. This composition endows the set of
graphs with the structure of a category [2].
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An invertible morphism f : G → H is called an isomorphism, and an au-
tomorphism if G = H. Two graphs related by an isomorphism share all the
same graph-theoretical properties, average degree, number of cycles, etc. Let us
remember this for later use.

2.2 Glueing

Definition 3 Given a set V , a tuple of graphs G1 = (V1, E1, t1, s1), . . . , Gn =
(Vn, En, tn, sn), and a tuple of maps p1 : V1 → V , . . . , pn : Vn → V , one may
define a new graph G = (V,E, t, s) as follows:

– E =
∑

1≤i≤n Ei (disjoint sum);
– for all i and ei ∈ Ei, t(ei) = pi(ti(ei)) and s(ei) = pi(si(ei)).

This graph G is said to be obtained by glueing the Gi along the maps pi, and is
denoted by [(G1, p1), . . . , (Gn, pn)]. The Gis will be refered to as the components
of the glueing and the maps pi as the glueing maps.

The glueing maps represent instructions explaining how the vertices in
∑

i Vi

should be glued together. By construction, they extend to graph morphisms
from Gi to G by setting pi(ei) = ei (indeed a morphism, since for each ei,
pi(ti(ei)) = t(ei) = t(pi(ei))). Those morphisms are injective on edges, and in
the application will also be injective on vertices.

An example of glueing For instance, the following component graphs:

G1 = v
a //u G2 = v u

boo G3 = u cbb

together with the glueing maps defined by p1(u) = p2(u) = p3(u) = u and
p1(v) = p2(v) = v, obtain the glueing:

G = uc
""

b

==
}}

a

v

Incidentally, one sees that glueing may result in multiple edges connecting the
same two vertices, even though no components has multi edges.

2.3 Shuffling

When a graph is obtained as a glueing, one can define transformations that
preserve each of the components.

Definition 4 Given a graph G = [(G1, p1), . . . , (Gn, pn)] and a tuple of bijec-
tions α1 : V1 → V1, . . . , αn : Vn → Vn, one defines the shuffle of G as:

Gα1,...,αn = [(G1, p1 ◦ α1), . . . , (Gn, pn ◦ αn)] (1)
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In words, Gα1,...,αn is obtained by glueing back together the component graphs
after applying to each an automorphism. Of course, the result depends both on
the glueing and the choice made of the automorphisms.

Although a shuffle preserves the component graphs, by modifying the way in
which these are interconnected, it may result in an overall graph which is not
isomorphic to the original one.

An example of shuffling We can see this by going back to the example and
choosing the shuffle defined by α1(u) = v, α1(v) = u, and both α2 and α3 are
the identity, then:

Gα1,α2,α3 = uc
""

b

==

a
!!
v

which indeed is not isomorphic to G.
Glueing and shuffling can be presented in a more abstract and algebraic way

by using amalgamated sums (also known as pushouts) in the category of graphs.
While not directly relevant for our development, this more abstract view may
prove useful with richer notion of graphs. It is a warrant of the robustness of the
approach and will be developed in future work.

3 Application to the combined PPI TRI network in yeast

With our definitions in place, we can now illustrate the approach on a biologically
meaningful example using a graph obtained by glueing two components.

It is known that regulatory influences, including those inferred from expres-
sion data analysis or genetic experiments, are implemented by the cell through
a combination of direct regulatory interactions and protein-protein interactions,
which propagate signals and modulate the activity level of transcription factors.
The detailed principles underlying that implementation are not well understood,
but one guiding property is the fact that protein interaction and transcriptional
regulation events take place in the regulatory network at different time-scales.

In order to clarify the interplay between these two types of interactions, we
have combined protein-protein (PPI) and protein-DNA (TRI, for ‘transcriptional
regulation interaction’) interaction data coming from various sources into a het-
erogeneous network by glueing together these two networks on the underlying
set of yeast proteins.

The data from which the composite network was built includes: 1440 pro-
tein complexes identified from the literature, through HMS-PCI or TAP [4,6],
8531 physical interactions generated using high-throughput Y2H assays [24], and
7455 direct regulatory interactions compiled from literature and from ChIP-Chip
experiments [5,12], connecting a total of 6541 yeast proteins. A subnetwork of
high-reliability interactions was defined, using a reliability scale founded on assay
type, and quality indicators provided by the authors, if any. The PPI network is
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built by connecting two proteins, in both directions, whenever there is a protein-
protein or a complex interaction between the two corresponding proteins. In the
case of the TRI network, an edge connects a regulator protein with its regulatee.

To assess the role of PPI in the TRI network, one needs a measure of the
cooperativity between the two associated subgraphs. The property we choose to
observe in the combined network, and its randomized variants, is the distribution
of the distance between proteins, i.e., the length of the shortest directed path
connecting any given pair of proteins. As explained in the preceding section,
randomized variants are obtained by shuffling the TRI network (in this case it
is enough to shuffle one of the two subgraphs to get all possible results up to
isomorphism). We then estimate the distance distribution both for the actual
and the shuffled networks.

At this point, we have to compromise to make the computation feasible.
Indeed, we only consider a small sample (700) of shuffled variants. This is a
necessary evil, since an enumeration of the full set of shuffled networks is un-
feasible, and on the other hand there is clearly no analytical expression for the
distribution of the shortest path lengths in the shuffled graphs. However, and
for the statistical observations we are interested in here, the empirical standard
deviation strongly indicates that the PPI- and TRI-subgraphs are glued together
so that the distribution of distances is biased in a significant way.

The first basic statistics with respect to which we observe a significant devia-
tion between the real graph and the population of shuffled graphs is the average
distance computed over the set of all connected pairs. Figure 1 reveals the value
of 3.95 computed over the real network is significantly larger than those obtained
from shuffled networks. Assuming that the average distance between connected
pairs in the population of shuffled graphs is a gaussian distribution, the p-value
of this deviation is 8× 10−134 (more details are given in the appendix).

Looking only at the mean distance may seem to suggest that shuffles contract
the graph. However the situation turns out to be more more subtle when one
refines this first observation and compares the histogram of distances in the
real and shuffled networks (see the appendix for details about algorithms and
computational costs). Figure 2 shows the distance histogram of the real graph
and summarises the distribution of the shuffled histograms. This summary is
obtained by indicating with central horizontal bars the average over the shuffled
networks, together with lower and upper vertical bars indicating the 1st and
99th percentiles (meaning for any n less than 2% of the shuffled graphs have
a number of pairs at distance n which is not whithin these vertical bars). The
last bar on the right indicates the amount of disconnected node pairs (hence at
distance ∞). Clearly the real graph is below the average histogram for n = 3,∞
and above for n = 4, 5, 6.

Let us comment first on the largest difference obtained for n = ∞. One sees
that there is in average of 21.2% disconnected pairs in the shuffled graphs whereas
only 2.7% are disconnected in the real graph, which is therefore outstandingly
more connected. These 18.5% additional disconnected pairs are accounting for
part for the deficit over the real pairs observed at distance n = 4, 5, 6 (which
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Fig. 1. Distribution of the average shortest path lengths in the shuffled networks.
The average in the real graph is 3.94. Averaging is done on the set of connected
pairs.

sums up to 20.9% if one takes also into account n = 7), while the remaining 2.4%
missing pairs account for the surplus over the real pairs observed at distance
n = 3. Shuffling the graph contracts it at short distances and expands at longer
ones.

The statistical picture we have so far is consistent with an idealisation of the
real graph as a series of PPI modules which are TRI connected in a fragile and
precise way —an idealized view which would explain both why shuffles are less
connected and more compact at short distances. To examine whether the statis-
tical evidence collated at this stage might indeed be construed as a measure of a
greater modularity of the real network, we have counted its number of connected
components, and compared it with the number of connected components in the
shuffled networks. Indeed, as Figure 3 shows, there is an average of 500 such
components in the shuffled networks whereas the number of connected compo-
nents in the real network is 37. It seems that when shuffled, the TRI does not
link properly the PPI components anymore, and breaks the long paths running
from a component to another. This is further confirmed by the distribution of
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Fig. 2. Distance histograms in the real graph and sample of shuffled graphs.
Rightmost column corresponds to disconnected pairs.

distances in the PPI and TRI subgraphs (Figure 4) which shows that the PPI
network is made mostly of tightly connected components with diameter ≤ 4,
whereas the TRI network exhibits much longer distances.

One could summarise the above observations by saying that the numerous
small PPI connected components are carefully interfaced with the TRI subgraph
in the real network so as to obtain a highly connected combined graph. To
further examine the properties of the real graph, one could think of observing
refined properties such as the histogram of length of shortest paths going through
both the TRI and PPI-subgraphs, with a view to eliminate the independent
contributions of the subgraphs and better measure their cooperativity.

4 Conclusion and future work

We have introduced a methodology for the identification of potentially mean-
ingful properties in biological networks, based on randomizations that preserve
other classes of properties. We have also provided the definition of a specific
category of such invariants, reflecting the decomposition of a network into sev-
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Fig. 3. Histogram of the number of connected components in the shuffled net-
works. There are 37 connected components in the real network.

eral subnetworks corresponding to different types of edges, and a procedure to
generate the corresponding class of networks with uniform probability. Finally,
we have given an illustration of the method on a network composed of PPI and
TRI interactions, where we show that the actual network exhibits a markedly
biased distribution of protein-protein distances relatively to the class of networks
obtained by shuffling the TRI network in all possible ways.

The extant ‘bottom-up’ approaches typically proceed by first selecting a sta-
tistical property thought to be characteristic of the class of networks against
which the network of interest is to be contrasted. That class of networks is then
obtained through a random generation procedure that provides no guarantee of
capturing precisely that property (i.e., there may be ‘false positive’ or ‘false neg-
ative’ networks), and little control over the probability of occurrence of networks
in that class.

In contrast, our ‘top-down’ approach allows for both a rigorous definition of
the invariant property and of the class of networks which obey it. This method-
ology can be driven by any biological property of interest that one may attribute
to interactions (edges) or species (nodes). As we have shown in the preceding
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Fig. 4. Histogram of the distance between pairs of nodes in the PPI network
(left) and in the TRI network (right). Frequencies are relative to the overall
number of pairs. 52% of the paires are connected in the PPI network, while only
21.5% are connected in the TRI network. The average distance, computed over
the set of connected pairs, is 3.8 in the PPI and 5.7 in the TRI.

section, interactions can be partitioned in the PPI and TRI class. Different kinds
of biological information could also be put to use. For instance, species could
be sorted according to either clustering information, localisation within the var-
ious cell organelles and membranes, biochemical specificities (e.g., length of the
amino-acid sequence, hydrophoby), or combinations thereof. Then, other cate-
gories of top-down invariants, such as the projection of a network onto a given
network of abstract clusters could be explored. In addition, there is also room for
using other observable properties. In fact, we believe that the approach sketched
in this paper is quite general.

Another line of investigation, perhaps more theoretical but potentially very
fruitful in terms of applied insights, is the design of a solid unified theoretical
framework for the definition of top-down invariant properties of networks, using
category theory. The ‘glueing’ invariant presented enjoys a natural definition in
this framework, and it seems likely that other properties that are related to the
preservation of (partial) connectivity structures will, too.

Finally, a longer-term promise of the above extensions is to provide the foun-
dations of an iterative search process for relevant properties in biological net-
works: at stage n, a class of networks is given by a set of invariants (biological
constraints/hypotheses), and one searches for a property that discriminates the
network of interest against the current class. Such a property is then consid-
ered as a candidate for ‘biologically meaningful’ status, and subjected to finer
scrutiny, theoretical and perhaps experimental. If that status is confirmed, then
the property is added to the set of invariants, thus defining a more restrictive
class of biological networks, against which the same or another network can be
pitted at the next iteration. In other words, the principle would be to search
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for properties that are not yet explained by the existing store of invariants —a
form of conditional probability assessment— and to elevate some of them to
explanation/invariant status.
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A Algorithms

This section is devoted to a brief description of the algorithms and methods used
to derive the various statistics used in the study of the yeast regulation network
(see Section 3).
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A.1 Adjacency matrices

The various graphs were represented using adjacency matrices, the adjacency
matrix M(G) of a graph G = (E, V, s, t) being defined as:

M(i, j) =

{
1 if ∃e ∈ E, s(e) = i and t(e) = j

0 otherwise

for (i, j) ∈ V 2. All computations were done under the simplifying assumption
that graphs were undirected, hence working with a symmetrised form of the
matrix M . It is worth noting that working with directed graphs could refine the
statistical picture.

A.2 Shuffle of the TRI network

Shuffling consists in permuting the indices of the matrix. That is, writing σ for
a permutation of V , the permuted adjacency matrix σ(M) is defined as:

σ(M)(i, j) = M(σ(i), σ(j))

This permutation has to be drawn uniformly among the |V |! such possible per-
mutations (this is done using a classical algorithm [?]). Once the TRI network
has been shuffled, it is glued together with the PPI network by applying the OR
operator entry by entry on the adjacency matrices (an operation which forgets
which subgraph edges came from).

A.3 Computation of the shortest path lengths distribution

Clearly the (i, j) coefficient of Mn is the number of paths of length n connecting i
to j in the graph underlying M . Since we are only interested in knowing whether
two nodes are connected by a path of a given length we may use a simplified
matrix product defined as:

Mn(i, j) =

{
1 if ∃k ∈ V : Mn−1(i, k) = M(k, j) = 1
0 otherwise

which is forgetting the numbers of connecting paths, only to remember whether
there is at least one.

Furthermore, the addition of the identity matrix I to the adjacency matrix
before the computation of the products gives an immediate access to the value
of the cumulative distribution function of the distances in the network. Indeed,
writing M̂ = M + I :

M̂n(i, j) =


1 if ∃k ∈ V,Mn−1(i, k) = M(k, j) = 1

or Mn−1(i, j) = 1
0 otherwise
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Thus the number of 1s in M̂(G)n is the number of ordered pairs connected by
at least one path of length ≤ n, and the whole distribution is obtained when the
computation reaches a fixpoint. This algorithm can be optimised by being run
separately on each connected component (these components can be obtained by
a prior and faster computation). Computing the distribution on the real PPI-
TRI graph takes about 30’ on a recent computer; the distribution for the 700
shuffles were computed down in 12 hours on a grid of 41 computers hosted by
the Genoscope.

B Statistics

This section details the definition and computation of p-values.
In order to compute p-values for the deviation of the average distance in the

real network from its distribution over the sample of shuffled networks, we need
to approximate this distribution by a Gaussian one, whose mean and standard
deviation are fixed to the empirical values computed on the sample. This is
necessary, since a direct estimation of the p-value as the proportion of shuffled
networks with a larger average distance than in the real network would yield a
degenerately optimistic estimate of 0.

The empirical values observed are m = 3.7 for the mean, and σ = 1.02×10−2

for the standard deviation.
Assuming this average distance is a Gaussian random variable A with those

parameters, the p-value of the deviation of the average distance in the real net-
work from its distribution over the sample of shuffled networks is defined as:

p = P(A > mc), with A ∼ N (m,σ)

where mc = 3.94 is the observed average distance in the real network. In this
case, this yields p = 8.1× 10−134.
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